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Abstract  

This study presents the development and validation of a survey instrument designed to assess the competence of biomedical 

engineers in AI-integrated healthcare settings. Based on the KSAA (Knowledge, Skills, Abilities, and Attitudes) framework, 

the instrument incorporates AI readiness and perceived organisational support (POS) as mediators of job performance. The 

items were adopted and adapted from established studies and refined through expert opinion analysis involving five experts 

from academia and industry, followed by feedback from 10 postgraduate reviewers. A pilot study was conducted with 40 

biomedical engineers in this study group using the same criteria as the intended full-scale study. Data were analysed using 

SPSS version 30.0, focusing on internal consistency through reliability analysis. Results showed strong reliability across all 

dimensions, with Cronbach's alpha values ranging from 0.823 to 0.897. This paper only reports the validation phase of the 

instrument; testing of the mediation hypothesis will be conducted in a subsequent full-scale study. Validated instruments 

provide a reliable foundation for future workforce development, training programmes, curriculum enhancements, and 

large-scale data collection in AI-driven healthcare environments. 
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Introduction 

In the era of digital transformation, biomedical 
engineers are no longer confined to ensuring the 
safety, functionality, and compliance of medical 
equipment alone. Their roles now encompass broader 
responsibilities, including planning, procurement, 
installation, maintenance, and disposal within 
increasingly complex and AI-driven healthcare 
environments (Topol, 2019; Ibrahim & Karim, 2020). 
These evolving functions demand not only technical 
expertise but also digital literacy, analytical agility, and 
the ability to collaborate across interdisciplinary teams 
(Olanrewaju & Hamid, 2021). 

The emergence of smart healthcare systems 
underscores the need for a robust set of competencies 
among biomedical engineers. However, existing 
competency models still tend to prioritise technical 
knowledge over the essential cognitive, interpersonal, 
and attitudinal domains (Mulder 2014). The KSAA 

framework stands for knowledge, skills, abilities, and 
attitudes and offers a more holistic foundation to 
assess these multidimensional attributes, especially in 
digitally enhanced work contexts(Mahmod et al., 
2025). 

Importantly, the translation of individual 
competencies into actual workplace performance may 
be influenced by contextual factors such as 
organisational support. POS is defined as employees’ 
perceptions of how much their organisation values 
their contribution and well-being, which has been 
linked to improved motivation, engagement, and job 
performance, particularly in technology adaptive roles 
(Eisenberger et al., 1986). Job performance, in turn, 
serves as a key indicator of how effectively individuals 
apply their competencies in practice. Complementing 
these relationships, AI readiness, defined as one’s 
preparedness and confidence to work with AI systems, 
is gaining recognition as a critical enabler of 
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performance in AI-integrated settings (Parasuraman & 
Colby, 2015). 

Despite the significance of these constructs, there 
remains a lack of validated instruments that 
collectively examine the relationships between KSAA, 
POS, AI readiness, and job performance, especially 
within the biomedical engineering field in emerging 
economies like Malaysia (Olanrewaju & Hamid, 2021).  

Existing engineering competency frameworks 
such as ABET and CDIO offer strong foundations in 
technical and design-orientated outcomes, particularly 
in areas such as problem solving, system integration, 
experimentation, teamwork, and design thinking. 
These models effectively support core engineering 
education and practice; however, they provide limited 
attention to emerging and non-technical competencies 
required in AI-driven work environments. Specifically, 
they do not adequately address digital literacy, AI 
readiness, behavioural adaptability, or organisational 
support mechanisms that influence technology 
adoption in modern healthcare settings. ABET’s 
outcome criteria remain largely centred on general 
engineering capabilities, while CDIO highlights 
innovation and system integration without 
considering contextual enablers such as workplace 
culture or institutional support. To address these gaps, 
the present study extends these traditional 
frameworks by incorporating psychological and 
organisational constructs, namely AI readiness and 
POS, to better reflect the competencies needed by 
biomedical engineers working in AI-integrated 
hospitals. 

Drawing from the work of van Berkum et al. 
(2024), who highlighted the importance of aligning 

graduate competencies with curriculum design in food 
technology education, this study adopts a similar lens 
within the biomedical engineering domain. It provides 
empirical evidence and a validated measurement 
instrument to support the development of 
competency-based curricula tailored to AI-integrated 
healthcare. 

Therefore, this study aims to develop and validate 
a measurement instrument that evaluates the 
influence of KSAA on job performance, with AI 
readiness and POS modelled as dual mediators 
supporting educators, employers, and policymakers in 
aligning biomedical engineering talent with the 
demands of future healthcare systems.  

This pilot study focuses on the development and 
validation of an instrument to assess competencies 
among biomedical engineers. The mediation effects of 
AI readiness and POS are not examined at this stage; 
these hypotheses will be tested in a subsequent full-
scale study. 

Conceptual Framework 

This study is based on the conceptual framework 
(Figure 1) that integrates the knowledge, skills, 
abilities, and attitudes (KSAA) model with AI readiness 
and POS as mediating variables influencing job 
performance. This framework draws on well-
established theories of professional competence, 
technology acceptance, and organisational behaviour 
and is adapted to the context of biomedical engineering 
in AI-integrated healthcare systems. 

 

 

Figure 1. Conceptual framework 
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KSAA Competency Model 

The KSAA model serves as the foundation for 
understanding the core attributes required by 
biomedical engineers to function effectively in digital 
healthcare environments (Mahmod et al., 2025)KSAA 
stands for knowledge, skills, abilities, and attitudes. It 
is a comprehensive framework widely used in 
competency modelling. Knowledge refers to the 
theoretical understanding of concepts, such as 
biomedical systems and AI applications in healthcare. 
Skills are the practical capabilities to apply this 
knowledge, including operating medical devices or 
interpreting AI-generated data (Mulder, 2014). 
Abilities encompass the cognitive and physical 
capacities to perform tasks, such as analytical thinking, 
problem-solving, and adaptability to new technologies 
(Spencer & Spencer, 1993). Attitudes involve 
behavioural and emotional dispositions that influence 
how tasks are approached, including motivation, 
responsibility, and openness to innovation (Boyatzis, 
2008). Bartram (2005) explains that competence 
includes not just knowledge and skills but also deeper 
ways of thinking and attitudes that help people adapt 
and perform well. 

AI Readiness 

Malaysia offers a timely and relevant setting for 
this investigation. The national healthcare sector is 
rapidly digitalising through initiatives such as the 
Ministry of Health’s MyDigital Healthcare Blueprint, 
yet structured competency models for biomedical 
engineers remain underdeveloped. Existing research, 
including Olanrewaju and Hamid (2021), has 
highlighted persistent digital-skills gaps and uneven AI 
adoption across public and private hospitals. 
Moreover, current professional and institutional 
frameworks in Malaysia have not fully integrated AI 
readiness as a core competency requirement. 
Validating an AI-related competency instrument 
within this context directly addresses a pressing 
workforce and educational need while also generating 
insights that may be transferable to other emerging 
economies undergoing similar transitions. 

AI readiness refers to an individual’s 
preparedness, willingness, and confidence to work 
with artificial intelligence tools and systems 
(Parasuraman & Colby, 2015). It encompasses digital 
literacy, technological optimism, and perceived self-
efficacy in using AI. In engineering environments, AI 
readiness functions as a psychological enabler that 
influences how effectively individuals can apply their 
competencies in AI-driven settings. Accordingly, it is 
positioned as a mediator between KSAA and job 
performance, reflecting its role in translating core 
attributes into technology-enhanced outcomes 
(Marques & Ferreira, 2020). In the Malaysian 
healthcare context, where AI implementation is 
accelerating but workforce preparedness remains 
inconsistent, this construct is particularly significant 

for understanding competency gaps and informing 
targeted capacity building. 

Perceived Organisational Support (POS) 

POS is conceptualised as the extent to which 
employees believe that their organisation values their 
contributions and supports their professional 
development (Eisenberger et al., 1986). In the context 
of technological change, POS enhances individual 
motivation, reduces uncertainty, and facilitates 
continuous learning. This study hypothesises that POS 
mediates the relationship between KSAA and job 
performance by providing an enabling organisational 
environment that fosters skill application and 
professional growth (Chow et al. 2018). It 
complements AI readiness by addressing the social and 
structural aspects of technology adoption. 

Job Performance 

Job performance is treated as the outcome of the 
conceptual model and includes both task-based and 
adaptive dimensions. Drawing from Campbell & 
Wiernik (2015), performance in dynamic 
environments such as AI-integrated healthcare 
involves not only technical execution but also 
innovation, continuous learning and responsiveness to 
digital transformation. Biomedical engineers’ job 
performance is thus influenced by both internal 
(KSAA) and external (AI readiness and POS) factors. 

Method 

This study was conducted in five sequential stages 
to develop and validate a competency measurement 
instrument for biomedical engineers in AI-integrated 
healthcare settings.  

In Stage 1, the questionnaire was designed based 
on the objectives of the study, using the method of 

adaptation and adoption from previous validated 
instruments related to knowledge, skills, abilities, and  

attitudes (KSAA), AI readiness, POS, and job 
performance (Boyatzis, 2008; Hung et al., 2020).  

In Stage 2, the Expert Opinion Analysis (EOA) 
instrument was reviewed by a panel of five subject 
matter experts, comprising academic professionals 
and industry practitioners, to evaluate the content, 
clarity, and relevance of each item. 

Next, in Stage 3, the refined questionnaire 
underwent a validation process and was submitted for 
ethical review and approval by the Universiti 
Teknologi Malaysia (UTM) ethics committee to ensure 
adherence to research integrity and ethical guidelines 
(Universiti Teknologi Malaysia, 2022).  

Following this, in Stage 4, a user feedback session 
was conducted with 10 postgraduate students who 
reviewed the instrument to establish face validity and 
provided feedback regarding the clarity and 
comprehensibility of the items (DeVellis, 2017). 
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Finally, in Stage 5, a pilot study was conducted with 
40 biomedical engineers who fulfilled the sampling 
criteria. The pilot data were analysed using SPSS 
Version 30.0, where Cronbach’s Alpha (CA) was used 
to assess the internal consistency and reliability of 
each construct. According to Song (2020), the CA 
coefficient is appropriate for determining the 
homogeneity of Likert-scale items. Additionally, 
descriptive statistics were used to analyse Section A, 
which comprised the demographic profile of the 
respondents. 

This study employed a quantitative pilot approach 
with an embedded validation framework for 
instrument development. The validation process was 
conducted in several structured phases to ensure both 
content and construct validity prior to full-scale 
deployment. Instrument Development and Validation 
Process: 

The development of the survey instrument 
followed a five-phase process: 

Stage 1: Item Construction 

The development of the survey instrument began 
with the item construction phase, guided by a 
comprehensive review of relevant literature and 
supported by well-established theoretical frameworks, 
namely the KSAA competency model (Boyatzis, 2008; 
Mulder, 2014), the Technology Readiness Index for AI 
readiness (Parasuraman & Colby, 2015), Social 
Exchange Theory underpinning Perceived 
Organisational Support (Eisenberger et al., 1986), and 
the performance model by Campbell et al. (1993) for 
job performance. The instrument was designed to 
investigate the relationship between the key variables 
in this study: KSAA the independent variable, job 
performance as the dependent variable, and AI 
readiness, along with POS as dual mediators (Boyatzis, 
2008; Campbell et al., 1993; Hung et al., 2020). This 
theoretical foundation reflects the critical 
competencies and organisational support factors 
required for biomedical engineers to perform 
effectively in AI-integrated healthcare environments. 
An initial pool of items was developed by adapting and 
adopting validated measures from prior studies to 
ensure conceptual clarity and content relevance 
(DeVellis, 2017). 

The survey instrument was structured into five 
main sections as follows: 

i. Section A: Demographic Information is 
collecting background data on respondents, 
including age, gender, years of professional 
experience, and highest level of education 
(Fink, 2017). 

ii. Section B: Competency Components (KSAA) 
assesses respondents’ knowledge, skills, 
abilities, and attitudes related to biomedical 
engineering in digital healthcare settings 
(Boyatzis, 2008; Mulder, 2014). 

iii. Section C1: AI Readiness is measuring the 
extent of respondents’ preparedness and 

confidence in working with AI technologies 
(Parasuraman 2015). 

iv. Section C2: POS and evaluating the level of 
support respondents perceive from their 
organisations in adopting AI-related tasks 
(Eisenberger 1986). 

v. Section D: Job Performance is capturing self-
reported measures of effectiveness and work 
outcomes in AI-integrated tasks (Koopmans 
2013). 

All items in Sections B through D were measured 
using a 5-point Likert scale, ranging from “strongly 
disagree” to “strongly agree”, adopted from Song 
(2020). This structured instrument served as the 
foundation for subsequent expert validation and 
psychometric testing. 

Stage 2: Expert Opinion Analysis (Content Validity) 

To ensure content validity, the draft instrument 
was assessed by a panel of five subject matter experts, 
consisting of academic experts in biomedical 
engineering, artificial intelligence, competency, and job 
performance, and industry professionals with 
experience in the healthcare technology sector. These 
experts were selected for their domain knowledge and 
practical insights relevant to the study context. The 
assessment focused on key aspects such as item 
relevance, wording clarity, and subject matter 
expertise. Each expert provided qualitative ratings and 
comments. Quantitative assessment was conducted 
using the Content Validity Index (CVI), allowing for a 
structured assessment of the appropriateness of each 
item (Zamanzadeh et al., 2015). Based on the CVI 
scores and expert feedback, several items were 
revised, refined, or removed to improve the conceptual 
accuracy and linguistic clarity of the instrument before 
moving on to the next validation phase. 

Stage 3: Ethical Review 

In the third stage, the refined version of the 
questionnaire underwent a formal validation and 
ethical review process. This involved ensuring that the 
instrument met the necessary standards for research 
quality, participant protection, and data 
confidentiality. The complete set of questionnaire 
items is finalised after expert review is submitted to 
the Universiti Teknologi Malaysia (UTM) Research 
Ethics Committee. The purpose of this submission was 
to obtain ethical clearance in accordance with 
institutional protocols and national research ethics 
guidelines (Universiti Teknologi Malaysia, 2022).  
Therefore, the researcher obtained confirmation from 
UTM Ethics Approval on July 30, 2025, Bill 8/2025. 
Approval number: UTMREC-2025-160 verbal and 
written feedback. The approval process ensured that 
the study adhered to principles of research integrity, 
including informed consent, voluntary participation, 
and the ethical handling of participant data. Only after 



ASEAN Journal of Engineering Education, 9(2)       Mahmod et al. (2025) 

108 

receiving official ethical approval was the study 
allowed to proceed to the next phase of data collection.  

Stage 4: User Review (Face Validity) 

To ensure clarity, readability, and practical 
interpretability of the survey instrument, the revised 
questionnaire was reviewed by 10 postgraduate 
students who represented the target population. Their 
feedback focused on the wording, item sequencing, and 
overall usability of the instrument. Based on their 
input, necessary adjustments were made to improve 
the phrasing and flow of the questionnaire. This 
process helped establish face validity, ensuring that the 
instrument was understandable and appropriate for 
use in the actual data collection phase (DeVellis, 2017). 

Stage 5: Pilot Study (Construct Validation) 

The finalised version of the survey instrument was 
pilot-tested with a sample of 40 biomedical engineers 
working in private hospitals across Malaysia. These 
participants were purposefully selected to reflect 
characteristics similar to the intended study 
population, ensuring contextual relevance to AI-
integrated healthcare environments. A sample size of 
30 to 50 participants is generally considered adequate 
for pilot testing of survey instruments, as 
recommended by Johanson and Brooks (2010), who 
state that a minimum of 30 respondents is sufficient to 
identify preliminary validity and reliability issues. 
Similarly, Hertzog (2008) supports the use of 10–40 
participants for pilot studies aimed at refining 
instruments and assessing feasibility. 

The primary objective of the pilot study was to 
evaluate the instrument’s construct validity and 
internal consistency prior to its full-scale 
administration (DeVellis, 2017; Boateng et al., 2018). 
During this phase, the researchers examined the 
dimensional structure of the instrument and assessed 
whether the items were interpreted consistently and 
meaningfully by respondents. The pilot also helped 
detect any issues related to item clarity, response bias, 
or scale performance (Netemeyer et al., 2003). 

To assess reliability, Cronbach’s Alpha values were 
used as the benchmark. According to Hair et al. (2020), 
values above 0.70 indicate acceptable reliability, 
values between 0.80 and 0.90 reflect very good 
internal consistency, while values above 0.90 may 
suggest redundancy. Since all constructs in this study 
exceeded the acceptable threshold, a repeated 
measure such as test–retest was not deemed necessary 
at the pilot stage. 

The results of the pilot study provided the 
empirical foundation to confirm the psychometric 
robustness of the instrument, ensuring it was suitable 
for broader data collection and further statistical 
analysis. 

 

Data Analysis 

The data analysis in this study involved two key 
approaches: psychometric evaluation and preliminary 
conceptual modelling. Several statistical methods were 
employed to assess the quality of the instrument and to 
explore the relationships between study constructs, 
including descriptive statistics and reliability analysis 
(DeVellis, 2017). 

Firstly, descriptive statistics were used to analyse 
Section A of the questionnaire, which captured 
respondents’ demographic information. This section 
consisted of four key elements: age, gender, working 
experience and education level.  This analysis provided 
an overview of the respondent profile and ensured that 
the sample was representative of the target population. 

Next, to assess internal consistency, Cronbach’s 
alpha coefficients were calculated for each construct. 
The results indicated high reliability, with all 
constructs achieving alpha values above 0.80, which is 
considered very good according to Hair et al. (2020). 
This confirmed that the items within each construct 
consistently measured the intended dimension. 

The interpretation scale for Cronbach’s Alpha used 
in this study is shown in Table 1. 

Table 1. Scale for Cronbach’s Alpha 

Alpha Coefficient Range Strength of 
Association 

< 0.6 Poor 

0.6 to < 0.7 Moderate 
0.7 to < 0.8 Good 
0.8 to < 0.9 Very Good 

0.9 Excellent 
Source: (Hair et al., 2020) 

Results 

These results are from the findings of the pilot 
study conducted among 40 biomedical engineers in the 
group of the study. The results encompass 
demographic profiles, descriptive statistics of key 
constructs, and internal consistency reliability testing 
for the developed instrument. 

Respondent Demographics 

The sample consisted of 40 biomedical engineers 
from both public and private hospitals (Table 2). The 
gender distribution was relatively balanced, with 21 
female respondents (52.5%) and 19 male respondents 
(47.5%). In terms of age, the majority were between 31 
and 40 years old (62.5%), followed by those aged 22–
30 years (22.5%) and 41–50 years (15%).  

Table 2. Gender Demographics 

Category Count  Percentage 

Male 19 47.5 
Female 21 52.5 

 40 100% 
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Descriptive Statistics 

The pilot study findings revealed consistently high 
mean values across all seven measured constructs are 
knowledge, skills, ability, and attitude (KSAA), AI 
Readiness, POS, and Job Performance are accompanied 
by relatively low standard deviations. This suggests a 
high degree of response consistency and a generally 
positive perception among participants regarding the 
measured domains. 

Specifically, the core KSAA components recorded 
mean scores ranging from 21.18 to 21.90 on a 25-point 
scale. AI Readiness recorded a mean of 57.72 (SD = 
8.34), POS recorded a mean of 42.45 (SD = 6.89), and 
Job Performance scored a mean of 68.40 (SD = 8.41). 
These results indicate that the instrument is well-
understood, contextually appropriate, and capable of 
capturing the key constructs relevant to biomedical 
engineers in AI-integrated healthcare environments. 

Overall, the pilot phase supports the instrument’s 
suitability for full-scale deployment in the next phase 
of the study. 

Reliability Analysis 

To assess internal consistency reliability, 
Cronbach’s Alpha coefficients were computed for each 
construct. All seven constructs exceeded the 
acceptable threshold of 0.80, indicating strong internal 
reliability and coherence among items. The highest 
reliability was recorded for the Attitude dimension (α 
= 0.897), followed by Knowledge (α = 0.884) and POS 
(α = 0.877). These results affirm the stability and 
consistency of the instrument's measurement 
properties across constructs. 

The summary of reliability results is presented in 
Table 3 below. 
 
Table 3. Reliability Statistics of Constructs (n = 40) 

Construct No. of 
Items 

Cronbach’s 
Alpha 

Mean Std 
Dev. 

Knowledge 5 0.884 21.70 2.38 

Skills 5 0.854 21.33 2.44 

Ability 5 0.823 21.18 2.35 

Attitude 5 0.897 21.90 2.52 

AI Readiness 16 0.854 57.72 8.34 

 POS 12 0.877 42.45 6.89 

Job 
Performance 

18 0.853 68.40 8.41 

(Source: Author)  

Comparison with Previous Studies 

The reliability coefficients obtained in this pilot 
study align well with prior research that has examined 
similar constructs within the domains of engineering 
competencies, AI readiness, and POS. The KSAA 
domains, the Cronbach’s Alpha values ranging from 
0.823 to 0.897 are consistent with findings by Mulder 

(2014) and Bartram (2005), who emphasised the 
robustness of multi-domain competency models in 
professional settings. In the engineering education 
context, van Berkum et al. (2024) reported Cronbach's 
Alpha values between 0.82 and 0.89 across cognitive, 
interpersonal, and technical clusters in a competency 
validation study for food technology graduates, 
supporting the structural integrity of similar 
constructs. 

Regarding AI readiness, the internal consistency of 
0.854 matches values observed in recent adaptations 
of the Technology Readiness Index (TRI 2.0) and AI for 
specific instruments. For instance, Parasuraman & 
Colby (2015) reported alpha values between 0.83 and 
0.87 for constructs such as optimism and 
innovativeness in AI adoption. Similarly, Marques & 
Ferreira (2020), who measured digital readiness in 
STEM professionals, documented an internal 
consistency of 0.85–0.88, reinforcing the reliability of 
digital and AI readiness dimensions in technical 
environments. Meanwhile, for POS, the result of 0.877 
is within the range of prior studies. According to 
Eisenberger et al. (2002), they originally reported 
alpha values above 0.80 in their POS scale 
development. More recent studies in healthcare and 
engineering domains, such as Chow et al. (2018), also 
observed reliability coefficients between 0.83 and 0.89, 
confirming the stability of POS as a mediating variable 
influencing job performance and learning engagement.  

The Job Performance construct, with a reliability of 
0.853, is similarly supported by research in 
engineering and healthcare workforce evaluations. 
Campbell & Wiernik (2015) identified consistent 
reliability levels when job performance was assessed 
through multi-dimensional behavioural indicators. In 
sum, the internal consistency reliability demonstrated 
in this pilot study is in strong agreement with earlier 
validated scales, confirming the suitability of the 
instrument for subsequent empirical studies in 
biomedical engineering and AI-integrated workplace 
settings. 

Discussion 

The findings of this pilot study provide empirical 
support for the reliability and preliminary construct 
validity of the developed instrument to assess 
biomedical engineering competencies and AI 
readiness. The strong internal consistency across all 
constructs indicates that the questionnaire items are 
coherent, relevant, and well-understood by 
professionals working in AI-integrated healthcare 
environments. These results offer important insights 
into the preparedness of biomedical engineers for 
evolving technological demands, with implications for 
curriculum development, workforce training, and 
policy planning. 

Firstly, the consistently high reliability coefficients 
for the KSAA constructs knowledge (α = 0.884), skills 
(α = 0.854), ability (α = 0.823), and attitude (α = 0.897) 
demonstrate that the instrument effectively captures 
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the multidimensional nature of professional 
competence. This aligns with well-established 
competency frameworks in engineering and education 
literature, such as those proposed by Bartram (2005) 
and Mulder (2014), which emphasise the integration of 
technical, cognitive, and attitudinal domains. The 
inclusion of attitudinal elements is particularly 
relevant in AI-driven contexts, where adaptability, 
openness to innovation, and digital confidence are 
increasingly recognised as enablers of performance. 

Secondly, the reliability of the AI Readiness 
construct (α = 0.854) reflects growing awareness 
among biomedical engineers of the need to engage 
with AI-enabled systems. This aligns with previous 
research by Parasuraman and Colby (2015) and 
Marques and Ferreira (2020), which frame readiness 
as a cognitive-emotional state that influences effective 
technology use. The high reliability score in this study 
suggests that the instrument is appropriately designed 
and easily interpreted for subsequent large-scale use. 

Thirdly, the findings reinforce the importance of 
POS, which recorded a Cronbach’s alpha of 0.877. This 
highlights POS as a critical mediating factor shaping 
engineers’ confidence, performance, and retention, 
particularly in sectors experiencing technological 
transition. Consistent with Eisenberger et al. (2002), 
organisational investment in employee development 
and digital upskilling is essential in high-technology 
environments such as biomedical engineering. 

The Job Performance construct also demonstrated 
strong reliability (α = 0.853), validating the 
behavioural indicators used in the instrument. The 
inclusion of both technical execution and adaptability 
to AI-enhanced settings allows for a comprehensive 
assessment of engineering outcomes. This dual focus 
supports data-driven improvements in curriculum 
design, performance appraisal, and professional 
accreditation. 

Although this pilot was conducted among 
biomedical engineers in Malaysia, the theoretical 
constructs underpinning the instrument KSAA, AI 
readiness, and POS are globally relevant. Overall, the 
validated instrument demonstrates strong potential to 
inform empirical research, curriculum enhancement 
and policy development in biomedical engineering 
education and workforce planning. Its ability to 
capture competencies, contextual enablers, and 
performance outcomes positions it as a timely 
contribution to AI-integrated healthcare practice. 

Limitations of the Study  

This pilot study has several limitations. The sample 
was small and drawn exclusively from private 
hospitals in Malaysia; thus, the findings cannot be 
generalised to biomedical engineers in public 
healthcare institutions or other countries. 
Nevertheless, the Malaysian context is a relevant 
setting to explore this gap, as it represents a developing 
healthcare system progressively integrating artificial 
intelligence into biomedical engineering practice. The 

reliance on self-reported data also introduces the risk 
of social desirability bias, where participants may 
overstate their competencies or readiness levels. 
Future studies should incorporate supervisor ratings, 
peer evaluations, or objective performance indicators 
to mitigate such bias.  A larger and more diverse 
sample, combined with triangulated data sources, 
would strengthen the robustness, reliability, and 
generalisability of future research outcomes. 

Conclusion 

This pilot study has successfully developed and 
validated a multidimensional measurement 
instrument that evaluates biomedical engineering 
competencies, AI readiness, POS, and job performance. 
The findings demonstrate strong internal consistency 
across all constructs, confirming the reliability of the 
instrument for use in AI-integrated healthcare 
environments. The high mean scores across KSAA 
domains suggest that biomedical engineers in Malaysia 
perceive themselves as well-equipped with core 
competencies, particularly in technical, cognitive, and 
attitudinal areas. Furthermore, the strong reliability of 
the AI readiness and POS constructs reinforces their 
relevance as mediating variables that influence how 
individual attributes translate into actual job 
performance. 

From an educational perspective, this instrument 
provides a valuable tool for curriculum designers, 
educators, and policymakers to assess and align 
graduate competencies with industry needs. The 
inclusion of AI readiness and POS offers a novel 
contribution to engineering education by accounting 
for both individual preparedness and contextual 
enablers. This supports the broader shift toward 
competency-based education and digital 
transformation in STEM fields. The validated 
instrument may now be deployed in a full-scale study 
to examine the mediating effects of AI readiness and 
POS on the relationship between KSAA and job 
performance. Such research can inform national talent 
development strategies and workforce planning in the 
biomedical engineering sector. 
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