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Abstract

In this research study, first-semester students solved tasks in the context of the fundamentals of electrical engineering. They
were wearing eye-trackers while solving the tasks. The collected data is used to train a machine learning model per task,
that predicts based just on eye-tracking data, if a student is about to succeed in solving a specific task or if the student is
about to fail. The trained models reach an accuracy of 85% respectively 91% depending on the task. In the future, this model
will be integrated into a virtual environment where eye-trackers are present, to assist those students who might fail.
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Introduction

Electrical engineering students in their first
semester tend to have difficulties with the
fundamentals of Electrical Engineering. This is due to
several reasons. Almost half of the students in the first
semester have a different first language than German.
So for some of these students, the language might be a
barrier. Additionally, in some countries, the direction
of electric current is taught differently because the
charge carriers of the opposite polarity are used.
Although this is not a problem from a technical point of
view, it can lead to comprehension problems that
represent a learning barrier. In particular, functioning
mental models are not questioned and can still be an
obstacle to learning when building up new knowledge.
These not-questioned mental models are called
preconceptions because they might be generally valid,
but they also might be wrong.

Furthermore, there are different ways to obtain
the university entrance qualification. Besides the
possibility of obtaining the qualification in a foreign
country, there are several options to obtain the
qualification in Germany. All of them confirm their
university entrance qualification, but the levels of
knowledge in mathematics and physics are different.

This means that the students, especially in the first
semesters, build a group of learners with several
different preconceptions, some of them true, but not all
of them. For this reason, analysis tools such as eye-
trackers are particularly interesting because they
provide insight into students' behavioral patterns.

In the following, we will describe how we collected
eye-tracking data and how we used it to train two
machine learning models that can predict whether a
student will solve a task correctly or not. In the third

step, the link to the learners is established. Here, a
decision can be made on how to handle the results of
the model. The first two steps are part of this article.
The third step will be discussed in the Application
section.

Related Work

The gaze behavior of the eyes reveals several
insights into the current cognitive states of humans
(Schindler & Lilienthal, 2019). Therefore, Raptis et al.
highlight in their literature review the possibility of
recognizing patterns in the gaze behavior, which can be
recorded using eye-trackers (Raptis et al., 2016). The
authors describe findings about the cognitive
differences in visual perception tasks, which can be
observed in eye-tracking data.

These observations were confirmed by Singh et al.
when they showed that it is possible to train a machine
learning model that can identify reading patterns that
are typical for inspectors who should find common
fault types in requirement engineering. The dataset
contains eye-tracking recordings of 39 participants. As
classifiers, Singh et al. used Bayesian, SVM, Ensemble,
Tree, and Lazy Learners. (Singh et al., 2018)

Pritalia et al. propose an approach that detects the
learning style (process information) of students based
on eye-tracking data (Pritalia et al., 2020). They tested
three different machine learning models (SVM, Naive
Bayes, and Logistic Regression) and achieved an
accuracy of 71% with the best approach. The dataset
used in this study comprises 68 participants.

Many other papers have been published dealing
with eye-tracking, but to the author's knowledge, none
deal with preconceptions in the fundamentals of
electrical engineering. However, all these publications
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show that machine learning models are suitable for
extracting information from this type of data.

Study

Design of the Course

To help all of the students reach an almost equal
level of knowledge in the fundamentals of electronics,
we offer a course that is specially designed to detect
and reduce misconceptions. A lot of the tasks the
students have to solve are taken from Kautz (Kautz,
2010). The focus of the course is on developing helpful
conceptions, respectively, to correct unhelpful
conceptions about the physical quantities of current,
voltage, and resistance.

To achieve this, the course includes both
theoretical and practical parts. First, the theory is
explained by a lecturer, and in the second part, the
students become active and work on tasks related to
the previously explained (Jambor, 2024). The course
takes place in a lecture hall.

Idea

In the future, based on the eye movements while
the students are working on a task, a virtual assistant
should give hints if it detects a disorganized or
unsystematic approach to solve the task. To achieve
such a system, it needs to distinguish between a
systematic and an unsystematic approach in solving
the tasks. So the challenge is to find significant metrics
based on eye-tracking data to distinguish between the
different approaches of the students. Each metric has
its advantages and disadvantages, and whether it is
appropriate for the distinction must first be examined.
Once suitable metrics are found, they can be used to
train a machine learning network, which can then be
used to classify the approaches of students just by
using eye-tracking data. The steps required to achieve
the model are condensed in Figure 1. The first step is
the eye-tracking survey. To get access to the data, the
software of the eye-tracker manufacturer is used.
Within this software, it is possible to export the
collected data. Afterward, various Python scripts can
be used to filter the data or perform calculations on the
data. Additionally, the training and testing of the
models are realized using Python scripts.

filter data
(python scripts)

Tobii Pro Lab

surve
Y (export raw data)

train + test of
B models

(python scripts)

calculate metrics
(python scripts)

Figure 1. Steps from gathering data to the model.
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Eye-Tracking Recordings

The eye-tracking recordings were made with
mobile eye-trackers (Tobii Pro Glasses 2). They allow
for gathering data in a realistic learning setting so that
after a short time of familiarization, students behave
like they would in a setting without the eye-trackers.
Students have reported that they have forgotten to
wear an eye-tracker. For those students who wear
regular glasses, special prescription lenses were
mounted to the eye-tracker because it is not possible to
wear the eye-tracker and regular glasses at the same
time. Due to the age of the young participants, most of
them do not have aids in the form of glasses, or the
prescription lenses are so low that most of the students
chose not to wear the prescription lenses from the eye-
tracker.

A total of 75 datasets were recorded in the course
mentioned above. The datasets include 6 from female
students and 69 from male students. The recordings
were made in groups of six in the laboratory (the
lecture hall is inappropriate for eye-tracking
recordings). During the recording, the students
worked individually. None of the students had to
participate in the study, as it was voluntary. The
students who participated in the study signed a
declaration of consent, explaining who received the
data and what may be done with this data. Students
who took part in the study had no advantages or
disadvantages compared to other students.

There are 48 usable recordings. 27 recordings are
not usable because:

e The students looked under the glasses instead of
through them, which makes it difficult for the eye-
tracker to track the eyes at all. This happened
especially to students who were not familiar with
wearing glasses.

e The students started the task but did not finish it.

e The glasses slipped out of place. This can be
observed on a heatmap that visualizes the fixation
density when empty areas have a high density of
fixations. Still, if the shift is small, the data might
be usable, or if it is just a single shift, the data
might be correctable. For this study, the shifted
data is not taken into account.

Not all the tasks in the course are suitable for eye-
tracking recording. Especially the practical parts
where students have to place components on a
breadboard and do some electrical voltage and current
measurements are difficult to analyze because of the
constantly changing surroundings. The latter results in
almost no support for software-assisted analysis, so
practical tasks are not recorded.

A task that is well-suited for recording with an eye-
tracker is shown in Figure 2. The picture shows five
electrical subnetworks. Three of them contain light
bulbs, and the other two consist just of an open circuit
or an ideal conductor. The first subtask for the students
is to arrange the networks in ascending order (by their
resistance).
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a b c d e
Figure 2. Students have to sort the electrical
subnetworks by their resistance. The colors
represent the areas of interest (AOIs).

To analyze the eye movements in such a task, areas
of interest (AOIs) are defined (Holmgvist et al., 2015).
Each AOI is colored in a different color. These colors
are not printed on the paper the students are working
on, they are just a visualization for the researcher. With
defined AOIs, it is possible to generate several metrics
that provide insights into students' behavior. The
metrics used in this paper are:

e Dwell Strings (DS), which add an AOI-specific
identifier to a chain of identifiers each time the
student visits the AOI. The characters of the AOI
itself are used as identifiers. If an identifier
appears multiple times in a row without another
identifier in between, the repetitions are removed
from the DS. The reason for this is the
comparability of different DSs. The DS should not
map the processing speed of the tasks the
students solve. Therefore, repetitions within the
DS are removed.

e Dwell Time (DTi) represents the duration of the
dwell. The DTi is used to compensate for the
removal of the repetitions in the DS.

e Revisit Count (RC) represents the number of
revisits in an AOI within a DS.

IO 1PF D

D™

Figure 3. Students have to insert the subnetworks
from Figure 2 and sort the circuits in ascending
order by current. The colors represent the areas of
interest (AOIs).

In the second task (see Figure 3), the students have
to sort the circuits by the amount of current flowing. To
do this, they have to fill in the boxes with the characters
by the subnetworks in Figure 2. A typical difficulty in
the fundamentals of electrical engineering is the effect
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of an electrical consumer in a network. While students
typically understand that an electrical consumer acts
as a barrier to current, the interaction of electrical
consumers connected in series or parallel is a
challenge. The tasks in this article address precisely
this problem.

The core idea behind the tasks is that the physical
consequences in series and parallel connections can be
estimated based on the electrical current. Calculations
are deliberately omitted at this stage, as the aim is for
students to gain not only a mathematical
understanding of electrical consumers, but also an idea
of how they work within a circuit. The second task in
particular practises this by requiring the electrical
currents of the subcircuits to be compared with each
other in different configurations.

Selection of Appropriate Metrics

Initially, it is not known which eye-tracking
metrics might be suitable to distinguish between a
student whose approach is systematic and a student
whose approach is unsystematic. This is why several
metrics are calculated, and those that are significant to
differentiate between systematic and unsystematic
approaches are used.

None of the metrics is normally distributed, which
is why rank-based tests are used to measure the
significance. Both the U-Test as well as the Kruskal-
Wallis test indicate that the RC is within the
significance level of P < 0.05. For the first task, the
Kruskal-Wallis test calculates a p-value of 0.037 for
AOI E. The RC of the other AOIs of the first task does
not seem to be relevant, because the p-value is bigger
than the significance level. For the second task, the p-
value of the RC reaches the significance level with the
top three AOIs in Figure 3 (0.021, 0.010, 0.010).

Machine Learning Model

Motivation

In previous work, other tasks from this course
were analyzed and used to train different machine
learning-based models (Paehr & Jambor, 2023). The
best performance was achieved with a Long Short-
Term Memory-based (LSTM) approach. The data used
for training and testing the model was exclusively
based on DS. In terms of the target application, in which
students need to be identified by the application as not
following a systematic approach to receive support,
this is a problem. The entire DS is present when the
task is completed by the student or when the student
gives up, respectively, solves the task wrong without
noticing the inconsistencies.

If the students are to receive hints, then they must
receive them earlier, during processing. Based on the
DS, this is not possible because the DS is only available
after the task is completed. A second problem of this
approach lies in the different lengths of the DSs (see
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Figure 4). Each student generates a different DS with
their gaze. As mentioned earlier, the students may have
highly different preconceptions, so the lengths of the
DSs differ. Unhelpful conceptions can lead to patterns
in the DS that are not helpful. Consequently, it is likely
that unhelpful conceptions will lead to incorrect
sorting. However, the model does not allow us to draw
conclusions about specific conceptions. Nevertheless,
lecturers can benefit from knowing that problems
frequently arise with specific tasks. The shortest DS is
15 characters long, while the longest DS is 287
characters long. These differences impede the ability of
typical comparison algorithms, such as the
Levenshtein distance (Levenshtein, 1966), to compare
the DSs of the students with each other, because the
length may have a bigger influence than the content of
the string itself. The Levenshtein distance penalizes
missing characters as much as not matching
characters. This means that if the DSs to be compared
are not nearly equal in length, it is not appropriate to
use this algorithm to compare the DSs.

A similar problem exists with LSTM models
because the input data of such a model needs to be
equal in size. Consequently, the longest DS serves as
the basis for determining the input size of the LSTM
model. Therefore, the shorter DSs are filled up with
zeros to match the size of the longest DS.

300

250

200

150 +

length of DS

100 4

50 4

O -
participants

Figure 4. Different lengths of DSs in the first task.

This is why the DS has been divided into chunks
(see Figure 5). The chunks consist of shorter parts of
the entire DS. Consequently, it is expected that the
prediction of a trained model is not as accurate as with
the entire DS, but it opens up the possibility of getting
the prediction earlier. The first prediction can be
obtained after the student has reached the number of
transitions between AOIs necessary to build the first
chunk of the minimal length.

DS: A| B|A
chunk,: AlB
chunk,: B
chunk;:
chunk,:
chunk;:

Figure 5. DS divided into overlapping chunks. In
this example, the length of the chunks is 5.
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So the research questions are as follows:

e RQ1: How many transitions are necessary to
create a model that can predict the outcome of the
student's work with sufficient accuracy?

e RQ2: How many parameters should such a model
have to minimize overfitting and underfitting?

e RQ3: Can other significant metrics improve the
performance of the model?

Design of the Model

In (Paehr & Jambor, 2023), eye-tracking data from
a comparable task were analyzed with different
machine learning models, like the decision tree (DT),
the support vector machine (SVM) (Scholkopf & Smola,
2002), the hidden Markov model (HMM), and also a
neural network with a bidirectional LSTM layer
(BiLSTM-Net). The DT and the SVM were trained with
position-based measures such as the fixation duration
on an AOI. While these kinds of metrics are significant
for this task, the results demonstrated that these
models achieve an accuracy of 0.79 respectively 0.73 in
predicting the success of students on a specific task.
Additionally, sequence-based approaches (HHM and
BiLSTM-Net trained with DS) were evaluated. The
HMM achieved an accuracy of 0.73 while the BiLSTM-
Net reached an accuracy of 0.8. The accuracy of the
BiLSTM-Net is the reason why this model is adapted to
the tasks here.

The base architecture of the models consists of
LSTM and dense layers (see Figure 6). While the LSTM
is an advanced version of a recurrent neuronal
network (Hochreiter & Schmidhuber, 1997), it is
designed to store input information and detect
sequences over time efficiently. Therefore, the LSTM
layer/s is/are responsible for learning the crucial
dependencies that lead to success or failure, within the
DSs. On the left side, two LSTM layers, each with 10
units, are stacked. The number of units is a control
variable of the possible complexity of the model. The
fewer units, the less complex the model can be.

Tests with the dataset have shown that the model
fits better if two LSTM layers are stacked compared to
a single layer with twice the number of units. This side
of the model is responsible for learning patterns within
the DSs and the corresponding DTis. This is why the
input shape of this side is chosen to [None, chunk size,
2]. The first parameter is a placeholder for the number
of datasets. Because the number of datasets depends
on the chunk size, it varies through the different chunk
sizes of the different trainings (within a single training,
the chunk size stays constant). The second parameter
is the chunk size, and the final parameter is set to two
for the AOI position and the corresponding DTi. A
dropout of 10% is added to the two LSTM layers to
make the model more robust.
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input (None, chunk size, 2)
Input ...........................................................
output (None, chunk size, 2)
v
input (None, chunk size, 2) input (None, AOIs, 1)
LSTM R EI LTI T T T PRI P T TP Input ...........................................................
output (None, chunk size, 10) output (None, AOlIs, 1)
v v
input (None, chunk size, 10) input (None, AOIs, 1)
LSTM ........................................................... LSTM ...........................................................
output (None, 10) output (None, 5)
v v
input (None, 10) input (None, 5)
Dense ........................................................... Dense ...........................................................
output (None, 10) output (None, 10)
v v
input (None, 10) (None, 10)
Concatcnatc ..........................................................................................................................................................
output (None, 10)
v v
input (None, 20)
Dense ..........................................................................................................................................................
output (None, 1)

Figure 6. Architecture of the model: left: processing of the DS and the DTi; right: processing of the RC

The right side of the model consists of just one
LSTM layer and a dense layer for transitioning the
results of the LSTM layer to the output. This part of the
model is supposed to learn information within the
dataset about the RC. This is why the input shape is
dependent on the number of AOIs. Consequently, the
number of AOIs is five for the first task (see Figure 2)
and six for the second task (see Figure 3). The number
of units of this LSTM layer is comparatively small, with
five units. The advantage of adding another significant
metric to the model may be undermined if the number
of units is chosen too large. As the results show (see
Table 1 and Table 2), five units appear to be an
appropriate choice.

To combine the results of both sides of the model],
the concatenate layer is used. This layer does not own
any weights that could be trained. It just concatenates
the results of the layers above, which consist of two
dense layers that are both activated by a ReL.U function.
The final layer of the model is a dense layer. This dense
layer is necessary because the output of the LSTM layer
is dependent on the number of units the layer consists
of. Consequently, the dense layer is a translation layer
between the outputs of the LSTM layer and the desired
output of the model. For this model, just a single output
is required to differentiate between the student's
approaches. Consequently, a sigmoid function is used
for activation. To train the model, the learning rate of
the Adam optimizer is chosen to be 0.001.

Results

Due to the limited number of datasets, it is
challenging to identify optimal parameter settings for
the model. The number of trainable model parameters
must be kept to a minimum to prevent overfitting the
training data. On the one hand, this leads to poor

accuracy of the test data, and on the other hand, it
might cause a positive gradient of the loss function
from the test data. Both the accuracy and the loss
function result in a suboptimal performance of the
model on never-before-seen data (test data).

This is why our best approach of the model has two
LSTM layers (each with 10 units) followed by a dense
layer (also 10 units, left side). In parallel (right side), a
third LSTM layer with 5 units and a second dense layer
with 10 units are added to the model to allow the
integration of metrics such as RC into the model (see
Figure 6).

Several other combinations of architectures were
tested. Increasing the number of LSTM layers also
leads to an increase in the number of trainable
parameters, which in turn increases the risk of
overfitting. The same effect can be observed when the
units of the LSTM layers are increased.

It is commonly known, that Bi-LSTM networks
adapt better than LSTM networks (Schuster & Paliwal,
1997). However, this is not always the case. The
bidirectional part of the network increases the
trainable parameters. In this special case, the accuracy
of such a model increases for the training data, but the
accuracy of the test data decreases if all other settings
are constant, except for the LSTM layers, which are
extended to Bi-LSTM layers.

Referring to the first research question (RQ1), the
impact of varying chunk sizes is evaluated. For the first
task, the shortest chunk size tested is five, and the
longest chunk size tested is 180. For this test, all
models between these sizes are separately trained. Due
to the split into different sizes, the number of datasets
is bigger when the chunk size is chosen shorter (see
Equation (1).

k=N-c,+1 (1)
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N is the size of the DS, and k is the number of
chunks for a chosen chunk size of c;. Although the
number of datasets is slightly higher due to this effect,
the smaller the chunk size is, models trained with
chunk sizes up to 30 do not adapt to the data well.

For the second task, it is appropriate to create a
second model because different AOIs need to be
included (see Figure 3). The basic structure of the
second model is identical. The difference between the
firstand second model is the number of AOIs taken into
account. The second task has six AOIs, while the first
task just has five AOlIs.

It is possible to use all AOIs from the first and the
second task in one model, but this would also increase
the length of the DS and create additional options for
constructing the DS. Consequently, the AOIs from the
first task are not used to train and test the model of the
second task. The resulting lengths of the DSs from the
first task are shown in Figure 7. Similar to the first task,
the lengths of the DSs from the second task differ
considerably.

The datasets are split into approximately 80%
training data and 20% test data. The reason why it is
just approximately 80% training data is that the entire
chunks of one DS need to be either training data or test
data. If a few chunks of one DS are designated as
training data and the remaining chunks of the same DS
are used as test data, it will occur that almost the same
chunks are used to train and test the model. To prevent
this, the training test split is done before generating the
chunks. Because the DS are of different lengths, it can
happen that the train test split is not perfectly 80/20.

200

150

100 -

length of DS

50 1

participants

Figure 7. Different lengths of DSs in the second
task.

Discussion

The number of datasets is of critical importance
when working with ML approaches. Typical datasets in
machine learning approaches are usually large. This is
necessary because the model is supposed to generalize
to fit not just data from the training, but also to never-
before-seen data.
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Table 1. Results of the model for the first task (see
Figure 2)

chunk 40 50 60
size

with | w/o | with | w/o | with w/o
RC RC RC RC RC RC

train | 80% - 90% - 86% -
test 76% - 85% - 81% -

Table 2. Results of the model for the second task
(see Figure 3)

chunk 40 50 60
size

with | w/o | with | w/o | with w/o
RC RC RC RC RC RC

train | 86% | 83% | 90% | 86% | 92% -
test 85% | 83% | 86% | 85% | 91% -

Gathering eye-tracking data is challenging. There
are several reasons why most eye-tracking studies
have fewer than 30 participants:

e Every eye-tracker needs to be calibrated before
the recording can start. This process is not
automated and consequently time-consuming.

e The eye-tracker does not work with all students.
Sometimes, when the eyes of the participants are
too moist, unintended reflections occur and make
a recording impossible. Additionally, some types
of contact lenses can be problematic.

e A problem with mobile eye-trackers is that they
may slip. This is problematic when the glasses slip
slightly more, as the calibration of the eye-tracker
is designed to stay in position.

Nevertheless, our machine-learning approach
reached an accuracy that is acceptable for the target
application. The results indicate that the first model
reaches an accuracy of 85% taking the metrics RC, DS,
and DTi into account (see Table 1). The RC appears to
be a critical factor in this model because it did not
adapt well to the datasets when the RC was excluded
from the analysis. Referring to RQ3, it should be noted
that other significant metrics, in addition to those
already mentioned, can enhance the model.

Referring to RQ1, the results demonstrate that a
chunk size of 40 is sufficient to predict the result of the
student with an accuracy of 76%. Considering that the
majority of the students did 50 or more transitions
when solving the task (see Figure 4), a chunk size in the
range from 40 to 50 appears appropriate.

The second model, for the second task, performs
even better (see Table 2). As observed in the previous
model, the RC has a positive effect on the results in
terms of test accuracy. Similar to the first task, the
chunk size is sufficient to predict the success of the
students before they have completed the task. A chunk
size of 40 to 60 appears appropriate in this case as well.
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The model size of both models is almost equal, and
compared to typical machine learning approaches,
fairly small. This is necessary because the model tends
to overfitif the layers are chosen larger. To address this
issue, more training data is necessary.

Limitations

While the models make it possible to predict
whether a student will solve the tasks, further
conclusions can also be drawn. For example, because
the models are able to calculate this prediction, the
influence of the input variables on these predictions
can be determined. Since the input variables are the
order in which the AOIs are gazed, the fixation lengths,
and the RC, these variables are relevant for the
prediction. A pattern for a systematic approach can be
learned from the order in which the AOIs are gazed.
The LSTM architecture used in this model is precisely
suited for this purpose. Consequently, it can be
assumed that the models tend to classify the systematic
approach or the non-systematic approach, even though
they have been trained using the results of the tasks.
Since the fixation durations are also integrated into the
model and there is a correlation with cognitive load
(Skaramagkas et al., 2023), the model result can also be
an indicator of cognitive load. These are indications of
why the model arrived at the corresponding decision.
However, it is not possible to say without further ado
why the model arrived at the corresponding decision.
[tis also not possible to conclude that there is a specific
preconception. There are numerous preconceptions in
the fundamentals of electrical engineering, and
machine learning approaches require more data sets
with these preconceptions for training in order to be
able to recognize the patterns of these preconceptions.

Since the tasks involve several concepts, such as
parallel and series connections of electrical consumers,
it is not possible to make a statement about the
students' conceptual understanding of the
relationships based on a binary classification of the
models.

Application

There are several ways to deal with the models'
predictions. On the one hand, automated support is
conceivable, for example, within a VR application
whose glasses have eye trackers. Depending on the
model, irrelevant areas could be concealed at first. It is
also conceivable that the necessary electrical rules for
completing the task could be displayed optionally. If no
VR environment is to be used, it is also conceivable that
the model results would not directly influence the task
sequence, but would only be available to the lecturer,
who could repeat task-specific explanations.

The models proposed here are designed to
generate the most accurate classification possible as
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early as possible. This means that the decision on when
to take support measures can be made from a didactic
rather than a technical perspective. The appropriate
timing for a measure must be examined.

The question of how model results influence
teaching depends on how the results of the models are
used. If subliminal optional hints are used within a VR
application, the impact of an incorrect model
prediction is less pronounced than if the task were to
be aborted. Another possibility is that the model
results are only available to the lecturer. This allows
the lecturer to objectively assess which tasks pose a
challenge for the students. As a result, the lecturer can
focus on repeating the relevant tasks.

Conclusion

The novelty of this approach lies in the fact that
two models based on an LSTM architecture have been
trained using eye-tracking data from the context of
electrical engineering fundamentals. Currently, the
model can differentiate between students who are
probably successful in solving a specific task and
students who may fail. The data basis of the models is
based exclusively on eye-tracking data. Consequently,
conclusions can be drawn from eye movements that
have not been used in a classic scenario to date,
meaning that potential has not been fully exploited.
Models such as those presented in this article are a step
toward making this potential accessible.

To utilize the models presented here, they need to
be integrated into a virtual environment where eye-
trackers are present. The data from the eye-tracker
must then be filtered and fed directly into the models.
This allows for the generation of optional hints for
students who are about to fail within the learning
situation.

To generate more specific hints, a finer
differentiation might be helpful. However, to achieve
this with sufficient accuracy, more data is needed.

The model is trained with data from students who
solve the task on conventional paper. The assumption
is that this data can be used to create support in a
virtual environment if the virtual environment is
similar enough. If this is not the case or the behavior of
the students is different in the virtual environment, the
model needs to be adapted or retrained.

The fact that models can be trained exclusively
using data collected by eye trackers and can achieve
accuracies of up to 91% shows that a wealth of
information can be gleaned from gaze directions. In
this approach, locations, fixation times, and RC have
been used as significant metrics. It cannot be ruled out
that other significant metrics exist that would allow for
a more refined classification. In this respect, any
approach that provides a broader perspective on
learners may be helpful.

160



ASEAN Journal of Engineering Education, 9(2)

Acknowledgement

The authors would like to thank Leibniz University
Hannover for the support provided in conducting this
study.

Conflict of Interest

No conflicts of interest exist.

References

Hochreiter, S., & Schmidhuber, ]. (1997). Long Short-Term
Memory. Neural Computation, 9(8), 1735-1780.
https://doi.org/10.1162/neco.1997.9.8.1735

Holmgqvist, K, Nystrom, M. Andersson, R, Dewhurst, R,
Jarodzka, H., & Weijer, J. V. D. (2015). Eye Tracking A
comprehensive guide to methods and measures. A
comprehensive guide to methods and measures (p. 560).
Oxford University Press.

Jambor, T. N. (2024). From Theory to Practice: Improving
Learning Through Action Orientation in Academic
Education. 2687-2696.
https://doi.org/10.21125 /inted.2024.0741

Kautz, C. H. (2010). Tutorien zur Elektrotechnik (1st ed.).
Pearson Studium.

Levenshtein, V. . (1966). Binary codes capable of correcting
deletions, insertions and reversals. Soviet Physics
Doklady, 10(8), 707-710.

Paehr, ., & Jambor, T. N. (2023). Using Eye-Tracking Technology
to Provide Assistive Support in a Mixed Reality Learning
System. 6067-6072.
https://doi.org/10.21125/iceri.2023.1516

Paehr & Jambor (2025)

Pritalia, G. L., Wibirama, S. Adji, T. B, & Kusrohmaniah, S.
(2020). Classification of Learning Styles in Multimedia
Learning Using Eye-Tracking and Machine Learning. 2020
FORTEI-International Conference on Electrical
Engineering (FORTEI-ICEE), 145-150.
https://doi.org/10.1109/FORTEI-
ICEE50915.2020.9249875

Raptis, G. E, Fidas, C. A, & Avouris, N. M. (2016). Using Eye
Tracking to Identify Cognitive Differences: A Brief
Literature Review. Proceedings of the 20th Pan-Hellenic
Conference on Informatics, 1-6.
https://doi.org/10.1145/3003733.3003762

Schindler, M., & Lilienthal, A. ]. (2019). Domain-specific
interpretation of eye tracking data: Towards a refined use
of the eye-mind hypothesis for the field of geometry.
Educational Studies in Mathematics, 101(1), 123-139.
https://doi.org/10.1007 /s10649-019-9878-z

Scholkopf, B.,, & Smola, A. J. (2002). Learning with Kernels:
Support Vector Machines, Regularization, Optimization,
and Beyond. The MIT Press.
https://doi.org/10.7551 /mitpress/4175.001.0001

Schuster, M., & Paliwal, K. K. (1997). Bidirectional recurrent
neural networks. IEEE Transactions on Signal Processing,
45(11),2673-2681. https://doi.org/10.1109/78.650093

Singh, M., Walia, G. S., & Goswami, A. (2018). Using Supervised
Learning to Guide the Selection of Software Inspectors in
Industry. 2018 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), 12-17.
https://doi.org/10.1109/ISSREW.2018.00-38

Skaramagkas, V., Giannakakis, G., Ktistakis, E.,, Manousos, D.,
Karatzanis, 1., Tachos, N., Tripoliti, E., Marias, K., Fotiadis,
D. I, & Tsiknakis, M. (2023). Review of Eye Tracking
Metrics Involved in Emotional and Cognitive Processes.
IEEE Reviews in Biomedical Engineering, 16, 260-277.
https://doi.org/10.1109/RBME.2021.3066072

161



