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Abstract  

In this research study, first-semester students solved tasks in the context of the fundamentals of electrical engineering. They 

were wearing eye-trackers while solving the tasks. The collected data is used to train a machine learning model per task, 

that predicts based just on eye-tracking data, if a student is about to succeed in solving a specific task or if the student is 

about to fail. The trained models reach an accuracy of 85% respectively 91% depending on the task. In the future, this model 

will be integrated into a virtual environment where eye-trackers are present, to assist those students who might fail. 
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Introduction  

Electrical engineering students in their first 
semester tend to have difficulties with the 
fundamentals of Electrical Engineering. This is due to 
several reasons. Almost half of the students in the first 
semester have a different first language than German. 
So for some of these students, the language might be a 
barrier. Additionally, in some countries, the direction 
of electric current is taught differently because the 
charge carriers of the opposite polarity are used. 
Although this is not a problem from a technical point of 
view, it can lead to comprehension problems that 
represent a learning barrier. In particular, functioning 
mental models are not questioned and can still be an 
obstacle to learning when building up new knowledge. 
These not-questioned mental models are called 
preconceptions because they might be generally valid, 
but they also might be wrong.  

Furthermore, there are different ways to obtain 
the university entrance qualification. Besides the 
possibility of obtaining the qualification in a foreign 
country, there are several options to obtain the 
qualification in Germany. All of them confirm their 
university entrance qualification, but the levels of 
knowledge in mathematics and physics are different.  

This means that the students, especially in the first 
semesters, build a group of learners with several 
different preconceptions, some of them true, but not all 
of them. For this reason, analysis tools such as eye-
trackers are particularly interesting because they 
provide insight into students' behavioral patterns.  

In the following, we will describe how we collected 
eye-tracking data and how we used it to train two 
machine learning models that can predict whether a 
student will solve a task correctly or not. In the third 

step, the link to the learners is established. Here, a 
decision can be made on how to handle the results of 
the model. The first two steps are part of this article. 
The third step will be discussed in the Application 
section. 

Related Work 

The gaze behavior of the eyes reveals several 
insights into the current cognitive states of humans 
(Schindler & Lilienthal, 2019). Therefore, Raptis et al. 
highlight in their literature review the possibility of 
recognizing patterns in the gaze behavior, which can be 
recorded using eye-trackers (Raptis et al., 2016). The 
authors describe findings about the cognitive 
differences in visual perception tasks, which can be 
observed in eye-tracking data.  

These observations were confirmed by Singh et al. 
when they showed that it is possible to train a machine 
learning model that can identify reading patterns that 
are typical for inspectors who should find common 
fault types in requirement engineering. The dataset 
contains eye-tracking recordings of 39 participants. As 
classifiers, Singh et al. used Bayesian, SVM, Ensemble, 
Tree, and Lazy Learners. (Singh et al., 2018) 

Pritalia et al. propose an approach that detects the 
learning style (process information) of students based 
on eye-tracking data (Pritalia et al., 2020). They tested 
three different machine learning models (SVM, Naive 
Bayes, and Logistic Regression) and achieved an 
accuracy of 71% with the best approach. The dataset 
used in this study comprises 68 participants.  

Many other papers have been published dealing 
with eye-tracking, but to the author's knowledge, none 
deal with preconceptions in the fundamentals of 
electrical engineering. However, all these publications 
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show that machine learning models are suitable for 
extracting information from this type of data. 

Study  

Design of the Course 

To help all of the students reach an almost equal 
level of knowledge in the fundamentals of electronics, 
we offer a course that is specially designed to detect 
and reduce misconceptions. A lot of the tasks the 
students have to solve are taken from Kautz (Kautz, 
2010). The focus of the course is on developing helpful 
conceptions, respectively, to correct unhelpful 
conceptions about the physical quantities of current, 
voltage, and resistance.  

To achieve this, the course includes both 
theoretical and practical parts. First, the theory is 
explained by a lecturer, and in the second part, the 
students become active and work on tasks related to 
the previously explained (Jambor, 2024). The course 
takes place in a lecture hall. 

Idea 

In the future, based on the eye movements while 
the students are working on a task, a virtual assistant 
should give hints if it detects a disorganized or 
unsystematic approach to solve the task. To achieve 
such a system, it needs to distinguish between a 
systematic and an unsystematic approach in solving 
the tasks. So the challenge is to find significant metrics 
based on eye-tracking data to distinguish between the 
different approaches of the students. Each metric has 
its advantages and disadvantages, and whether it is 
appropriate for the distinction must first be examined. 
Once suitable metrics are found, they can be used to 
train a machine learning network, which can then be 
used to classify the approaches of students just by 
using eye-tracking data. The steps required to achieve 
the model are condensed in Figure 1. The first step is 
the eye-tracking survey. To get access to the data, the 
software of the eye-tracker manufacturer is used. 
Within this software, it is possible to export the 
collected data. Afterward, various Python scripts can 
be used to filter the data or perform calculations on the 
data. Additionally, the training and testing of the 
models are realized using Python scripts. 

 

 

Figure 1. Steps from gathering data to the model. 

Eye-Tracking Recordings 

The eye-tracking recordings were made with 
mobile eye-trackers (Tobii Pro Glasses 2). They allow 
for gathering data in a realistic learning setting so that 
after a short time of familiarization, students behave 
like they would in a setting without the eye-trackers. 
Students have reported that they have forgotten to 
wear an eye-tracker. For those students who wear 
regular glasses, special prescription lenses were 
mounted to the eye-tracker because it is not possible to 
wear the eye-tracker and regular glasses at the same 
time. Due to the age of the young participants, most of 
them do not have aids in the form of glasses, or the 
prescription lenses are so low that most of the students 
chose not to wear the prescription lenses from the eye-
tracker.  

A total of 75 datasets were recorded in the course 
mentioned above. The datasets include 6 from female 
students and 69 from male students. The recordings 
were made in groups of six in the laboratory (the 
lecture hall is inappropriate for eye-tracking 
recordings). During the recording, the students 
worked individually. None of the students had to 
participate in the study, as it was voluntary. The 
students who participated in the study signed a 
declaration of consent, explaining who received the 
data and what may be done with this data. Students 
who took part in the study had no advantages or 
disadvantages compared to other students. 

There are 48 usable recordings. 27 recordings are 
not usable because: 
• The students looked under the glasses instead of 

through them, which makes it difficult for the eye-
tracker to track the eyes at all. This happened 
especially to students who were not familiar with 
wearing glasses. 

• The students started the task but did not finish it. 
• The glasses slipped out of place. This can be 

observed on a heatmap that visualizes the fixation 
density when empty areas have a high density of 
fixations. Still, if the shift is small, the data might 
be usable, or if it is just a single shift, the data 
might be correctable. For this study, the shifted 
data is not taken into account. 

Not all the tasks in the course are suitable for eye-
tracking recording. Especially the practical parts 
where students have to place components on a 
breadboard and do some electrical voltage and current 
measurements are difficult to analyze because of the 
constantly changing surroundings. The latter results in 
almost no support for software-assisted analysis, so 
practical tasks are not recorded. 

A task that is well-suited for recording with an eye-
tracker is shown in Figure 2. The picture shows five 
electrical subnetworks. Three of them contain light 
bulbs, and the other two consist just of an open circuit 
or an ideal conductor. The first subtask for the students 
is to arrange the networks in ascending order (by their 
resistance). 
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Figure 2. Students have to sort the electrical 

subnetworks by their resistance. The colors 

represent the areas of interest (AOIs).  

To analyze the eye movements in such a task, areas 
of interest (AOIs) are defined (Holmqvist et al., 2015). 
Each AOI is colored in a different color. These colors 
are not printed on the paper the students are working 
on, they are just a visualization for the researcher. With 
defined AOIs, it is possible to generate several metrics 
that provide insights into students' behavior. The 
metrics used in this paper are: 
• Dwell Strings (DS), which add an AOI-specific 

identifier to a chain of identifiers each time the 
student visits the AOI. The characters of the AOI 
itself are used as identifiers. If an identifier 
appears multiple times in a row without another 
identifier in between, the repetitions are removed 
from the DS. The reason for this is the 
comparability of different DSs. The DS should not 
map the processing speed of the tasks the 
students solve. Therefore, repetitions within the 
DS are removed. 

• Dwell Time (DTi) represents the duration of the 
dwell. The DTi is used to compensate for the 
removal of the repetitions in the DS. 

• Revisit Count (RC) represents the number of 
revisits in an AOI within a DS. 
 

 
Figure 3. Students have to insert the subnetworks 

from Figure 2 and sort the circuits in ascending 

order by current. The colors represent the areas of 

interest (AOIs). 

In the second task (see Figure 3), the students have 
to sort the circuits by the amount of current flowing. To 
do this, they have to fill in the boxes with the characters 
by the subnetworks in Figure 2. A typical difficulty in 
the fundamentals of electrical engineering is the effect 

of an electrical consumer in a network. While students 
typically understand that an electrical consumer acts 
as a barrier to current, the interaction of electrical 
consumers connected in series or parallel is a 
challenge. The tasks in this article address precisely 
this problem.  

The core idea behind the tasks is that the physical 
consequences in series and parallel connections can be 
estimated based on the electrical current. Calculations 
are deliberately omitted at this stage, as the aim is for 
students to gain not only a mathematical 
understanding of electrical consumers, but also an idea 
of how they work within a circuit. The second task in 
particular practises this by requiring the electrical 
currents of the subcircuits to be compared with each 
other in different configurations.   

Selection of Appropriate Metrics 

Initially, it is not known which eye-tracking 
metrics might be suitable to distinguish between a 
student whose approach is systematic and a student 
whose approach is unsystematic. This is why several 
metrics are calculated, and those that are significant to 
differentiate between systematic and unsystematic 
approaches are used. 

None of the metrics is normally distributed, which 
is why rank-based tests are used to measure the 
significance. Both the U-Test as well as the Kruskal-
Wallis test indicate that the RC is within the 
significance level of P ≤ 0.05. For the first task, the 
Kruskal-Wallis test calculates a p-value of 0.037 for 
AOI E. The RC of the other AOIs of the first task does 
not seem to be relevant, because the p-value is bigger 
than the significance level. For the second task, the p-
value of the RC reaches the significance level with the 
top three AOIs in Figure 3 (0.021, 0.010, 0.010). 

Machine Learning Model 

Motivation 

In previous work, other tasks from this course 
were analyzed and used to train different machine 
learning-based models (Paehr & Jambor, 2023). The 
best performance was achieved with a Long Short-
Term Memory-based (LSTM) approach. The data used 
for training and testing the model was exclusively 
based on DS. In terms of the target application, in which 
students need to be identified by the application as not 
following a systematic approach to receive support, 
this is a problem. The entire DS is present when the 
task is completed by the student or when the student 
gives up, respectively, solves the task wrong without 
noticing the inconsistencies. 

If the students are to receive hints, then they must 
receive them earlier, during processing. Based on the 
DS, this is not possible because the DS is only available 
after the task is completed. A second problem of this 
approach lies in the different lengths of the DSs (see 
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Figure 4). Each student generates a different DS with 
their gaze. As mentioned earlier, the students may have 
highly different preconceptions, so the lengths of the 
DSs differ. Unhelpful conceptions can lead to patterns 
in the DS that are not helpful. Consequently, it is likely 
that unhelpful conceptions will lead to incorrect 
sorting. However, the model does not allow us to draw 
conclusions about specific conceptions. Nevertheless, 
lecturers can benefit from knowing that problems 
frequently arise with specific tasks. The shortest DS is 
15 characters long, while the longest DS is 287 
characters long. These differences impede the ability of 
typical comparison algorithms, such as the 
Levenshtein distance (Levenshtein, 1966), to compare 
the DSs of the students with each other, because the 
length may have a bigger influence than the content of 
the string itself. The Levenshtein distance penalizes 
missing characters as much as not matching 
characters. This means that if the DSs to be compared 
are not nearly equal in length, it is not appropriate to 
use this algorithm to compare the DSs. 

A similar problem exists with LSTM models 
because the input data of such a model needs to be 
equal in size. Consequently, the longest DS serves as 
the basis for determining the input size of the LSTM 
model. Therefore, the shorter DSs are filled up with 
zeros to match the size of the longest DS.   

 
Figure 4. Different lengths of DSs in the first task. 

This is why the DS has been divided into chunks 
(see Figure 5). The chunks consist of shorter parts of 
the entire DS. Consequently, it is expected that the 
prediction of a trained model is not as accurate as with 
the entire DS, but it opens up the possibility of getting 
the prediction earlier. The first prediction can be 
obtained after the student has reached the number of 
transitions between AOIs necessary to build the first 
chunk of the minimal length. 

 

 
Figure 5. DS divided into overlapping chunks. In 

this example, the length of the chunks is 5. 

So the research questions are as follows: 
• RQ1: How many transitions are necessary to 

create a model that can predict the outcome of the 
student's work with sufficient accuracy? 

• RQ2: How many parameters should such a model 
have to minimize overfitting and underfitting? 

• RQ3: Can other significant metrics improve the 
performance of the model?  

Design of the Model 

In (Paehr & Jambor, 2023), eye-tracking data from 
a comparable task were analyzed with different 
machine learning models, like the decision tree (DT), 
the support vector machine (SVM) (Schölkopf & Smola, 
2002), the hidden Markov model (HMM), and also a 
neural network with a bidirectional LSTM layer 
(BiLSTM-Net). The DT and the SVM were trained with 
position-based measures such as the fixation duration 
on an AOI. While these kinds of metrics are significant 
for this task, the results demonstrated that these 
models achieve an accuracy of 0.79 respectively 0.73 in 
predicting the success of students on a specific task. 
Additionally, sequence-based approaches (HHM and 
BiLSTM-Net trained with DS) were evaluated. The 
HMM achieved an accuracy of 0.73 while the BiLSTM-
Net reached an accuracy of 0.8. The accuracy of the 
BiLSTM-Net is the reason why this model is adapted to 
the tasks here. 

The base architecture of the models consists of 
LSTM and dense layers (see Figure 6). While the LSTM 
is an advanced version of a recurrent neuronal 
network (Hochreiter & Schmidhuber, 1997), it is 
designed to store input information and detect 
sequences over time efficiently. Therefore, the LSTM 
layer/s is/are responsible for learning the crucial 
dependencies that lead to success or failure, within the 
DSs. On the left side, two LSTM layers, each with 10 
units, are stacked. The number of units is a control 
variable of the possible complexity of the model. The 
fewer units, the less complex the model can be. 

Tests with the dataset have shown that the model 
fits better if two LSTM layers are stacked compared to 
a single layer with twice the number of units. This side 
of the model is responsible for learning patterns within 
the DSs and the corresponding DTis. This is why the 
input shape of this side is chosen to [None, chunk size, 
2]. The first parameter is a placeholder for the number 
of datasets. Because the number of datasets depends 
on the chunk size, it varies through the different chunk 
sizes of the different trainings (within a single training, 
the chunk size stays constant). The second parameter 
is the chunk size, and the final parameter is set to two 
for the AOI position and the corresponding DTi. A 
dropout of 10% is added to the two LSTM layers to 
make the model more robust. 
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The right side of the model consists of just one 
LSTM layer and a dense layer for transitioning the 
results of the LSTM layer to the output. This part of the 
model is supposed to learn information within the 
dataset about the RC. This is why the input shape is 
dependent on the number of AOIs. Consequently, the 
number of AOIs is five for the first task (see Figure 2) 
and six for the second task (see Figure 3). The number 
of units of this LSTM layer is comparatively small, with 
five units. The advantage of adding another significant 
metric to the model may be undermined if the number 
of units is chosen too large. As the results show (see 
Table 1 and Table 2), five units appear to be an 
appropriate choice. 

To combine the results of both sides of the model, 
the concatenate layer is used. This layer does not own 
any weights that could be trained. It just concatenates 
the results of the layers above, which consist of two 
dense layers that are both activated by a ReLU function. 
The final layer of the model is a dense layer. This dense 
layer is necessary because the output of the LSTM layer 
is dependent on the number of units the layer consists 
of. Consequently, the dense layer is a translation layer 
between the outputs of the LSTM layer and the desired 
output of the model. For this model, just a single output 
is required to differentiate between the student's 
approaches. Consequently, a sigmoid function is used 
for activation. To train the model, the learning rate of 
the Adam optimizer is chosen to be 0.001. 

Results 

Due to the limited number of datasets, it is 
challenging to identify optimal parameter settings for 
the model. The number of trainable model parameters 
must be kept to a minimum to prevent overfitting the 
training data. On the one hand, this leads to poor 

accuracy of the test data, and on the other hand, it 
might cause a positive gradient of the loss function 
from the test data. Both the accuracy and the loss 
function result in a suboptimal performance of the 
model on never-before-seen data (test data).  

This is why our best approach of the model has two 
LSTM layers (each with 10 units) followed by a dense 
layer (also 10 units, left side). In parallel (right side), a 
third LSTM layer with 5 units and a second dense layer 
with 10 units are added to the model to allow the 
integration of metrics such as RC into the model (see 
Figure 6). 

Several other combinations of architectures were 
tested. Increasing the number of LSTM layers also 
leads to an increase in the number of trainable 
parameters, which in turn increases the risk of 
overfitting. The same effect can be observed when the 
units of the LSTM layers are increased. 

It is commonly known, that Bi-LSTM networks 
adapt better than LSTM networks (Schuster & Paliwal, 
1997). However, this is not always the case. The 
bidirectional part of the network increases the 
trainable parameters. In this special case, the accuracy 
of such a model increases for the training data, but the 
accuracy of the test data decreases if all other settings 
are constant, except for the LSTM layers, which are 
extended to Bi-LSTM layers. 

Referring to the first research question (RQ1), the 
impact of varying chunk sizes is evaluated. For the first 
task, the shortest chunk size tested is five, and the 
longest chunk size tested is 180. For this test, all 
models between these sizes are separately trained. Due 
to the split into different sizes, the number of datasets 
is bigger when the chunk size is chosen shorter (see 
Equation (1). 

 𝑘 = 𝑁 − 𝑐𝑠 + 1 (1) 

Figure 6. Architecture of the model: left: processing of the DS and the DTi; right: processing of the RC 
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N is the size of the DS, and k is the number of 
chunks for a chosen chunk size of 𝑐𝑠. Although the 
number of datasets is slightly higher due to this effect, 
the smaller the chunk size is, models trained with 
chunk sizes up to 30 do not adapt to the data well.  

For the second task, it is appropriate to create a 
second model because different AOIs need to be 
included (see Figure 3). The basic structure of the 
second model is identical. The difference between the 
first and second model is the number of AOIs taken into 
account. The second task has six AOIs, while the first 
task just has five AOIs. 

It is possible to use all AOIs from the first and the 
second task in one model, but this would also increase 
the length of the DS and create additional options for 
constructing the DS. Consequently, the AOIs from the 
first task are not used to train and test the model of the 
second task. The resulting lengths of the DSs from the 
first task are shown in Figure 7. Similar to the first task, 
the lengths of the DSs from the second task differ 
considerably. 

The datasets are split into approximately 80% 
training data and 20% test data. The reason why it is 
just approximately 80% training data is that the entire 
chunks of one DS need to be either training data or test 
data. If a few chunks of one DS are designated as 
training data and the remaining chunks of the same DS 
are used as test data, it will occur that almost the same 
chunks are used to train and test the model. To prevent 
this, the training test split is done before generating the 
chunks. Because the DS are of different lengths, it can 
happen that the train test split is not perfectly 80/20. 

 
Figure 7. Different lengths of DSs in the second 

task. 

Discussion 

The number of datasets is of critical importance 
when working with ML approaches. Typical datasets in 
machine learning approaches are usually large. This is 
necessary because the model is supposed to generalize 
to fit not just data from the training, but also to never-
before-seen data. 

 
 

Table 1. Results of the model for the first task (see 

Figure 2) 

chunk 
size 

40 50 60 

 with 
RC 

w/o 
RC 

with 
RC 

w/o 
RC 

with 
RC 

w/o 
RC 

train 80% - 90% - 86% - 
test 76% - 85% - 81% - 

 
Table 2. Results of the model for the second task 

(see Figure 3) 

chunk 
size 

40 50 60 

 with 
RC 

w/o 
RC 

with 
RC 

w/o 
RC 

with 
RC 

w/o 
RC 

train 86% 83% 90% 86% 92% - 
test 85% 83% 86% 85% 91% - 

 
Gathering eye-tracking data is challenging. There 

are several reasons why most eye-tracking studies 
have fewer than 30 participants:  
• Every eye-tracker needs to be calibrated before 

the recording can start. This process is not 
automated and consequently time-consuming.  

• The eye-tracker does not work with all students. 
Sometimes, when the eyes of the participants are 
too moist, unintended reflections occur and make 
a recording impossible. Additionally, some types 
of contact lenses can be problematic.  

• A problem with mobile eye-trackers is that they 
may slip. This is problematic when the glasses slip 
slightly more, as the calibration of the eye-tracker 
is designed to stay in position.  

Nevertheless, our machine-learning approach 
reached an accuracy that is acceptable for the target 
application. The results indicate that the first model 
reaches an accuracy of 85% taking the metrics RC, DS, 
and DTi into account (see Table 1). The RC appears to 
be a critical factor in this model because it did not 
adapt well to the datasets when the RC was excluded 
from the analysis. Referring to RQ3, it should be noted 
that other significant metrics, in addition to those 
already mentioned, can enhance the model.  

Referring to RQ1, the results demonstrate that a 
chunk size of 40 is sufficient to predict the result of the 
student with an accuracy of 76%. Considering that the 
majority of the students did 50 or more transitions 
when solving the task (see Figure 4), a chunk size in the 
range from 40 to 50 appears appropriate.  

The second model, for the second task, performs 
even better (see Table 2). As observed in the previous 
model, the RC has a positive effect on the results in 
terms of test accuracy. Similar to the first task, the 
chunk size is sufficient to predict the success of the 
students before they have completed the task. A chunk 
size of 40 to 60 appears appropriate in this case as well.  
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The model size of both models is almost equal, and 
compared to typical machine learning approaches, 
fairly small. This is necessary because the model tends 
to overfit if the layers are chosen larger. To address this 
issue, more training data is necessary.  

Limitations 

While the models make it possible to predict 
whether a student will solve the tasks, further 
conclusions can also be drawn. For example, because 
the models are able to calculate this prediction, the 
influence of the input variables on these predictions 
can be determined. Since the input variables are the 
order in which the AOIs are gazed, the fixation lengths, 
and the RC, these variables are relevant for the 
prediction. A pattern for a systematic approach can be 
learned from the order in which the AOIs are gazed. 
The LSTM architecture used in this model is precisely 
suited for this purpose. Consequently, it can be 
assumed that the models tend to classify the systematic 
approach or the non-systematic approach, even though 
they have been trained using the results of the tasks. 
Since the fixation durations are also integrated into the 
model and there is a correlation with cognitive load 
(Skaramagkas et al., 2023), the model result can also be 
an indicator of cognitive load. These are indications of 
why the model arrived at the corresponding decision. 
However, it is not possible to say without further ado 
why the model arrived at the corresponding decision. 
It is also not possible to conclude that there is a specific 
preconception. There are numerous preconceptions in 
the fundamentals of electrical engineering, and 
machine learning approaches require more data sets 
with these preconceptions for training in order to be 
able to recognize the patterns of these preconceptions. 

Since the tasks involve several concepts, such as 
parallel and series connections of electrical consumers, 
it is not possible to make a statement about the 
students' conceptual understanding of the 
relationships based on a binary classification of the 
models.  

Application 

There are several ways to deal with the models' 
predictions. On the one hand, automated support is 
conceivable, for example, within a VR application 
whose glasses have eye trackers. Depending on the 
model, irrelevant areas could be concealed at first. It is 
also conceivable that the necessary electrical rules for 
completing the task could be displayed optionally. If no 
VR environment is to be used, it is also conceivable that 
the model results would not directly influence the task 
sequence, but would only be available to the lecturer, 
who could repeat task-specific explanations. 

The models proposed here are designed to 
generate the most accurate classification possible as 

early as possible. This means that the decision on when 
to take support measures can be made from a didactic 
rather than a technical perspective. The appropriate 
timing for a measure must be examined. 

The question of how model results influence 
teaching depends on how the results of the models are 
used. If subliminal optional hints are used within a VR 
application, the impact of an incorrect model 
prediction is less pronounced than if the task were to 
be aborted. Another possibility is that the model 
results are only available to the lecturer. This allows 
the lecturer to objectively assess which tasks pose a 
challenge for the students. As a result, the lecturer can 
focus on repeating the relevant tasks. 

Conclusion 

The novelty of this approach lies in the fact that 
two models based on an LSTM architecture have been 
trained using eye-tracking data from the context of 
electrical engineering fundamentals. Currently, the 
model can differentiate between students who are 
probably successful in solving a specific task and 
students who may fail. The data basis of the models is 
based exclusively on eye-tracking data. Consequently, 
conclusions can be drawn from eye movements that 
have not been used in a classic scenario to date, 
meaning that potential has not been fully exploited. 
Models such as those presented in this article are a step 
toward making this potential accessible. 

To utilize the models presented here, they need to 
be integrated into a virtual environment where eye-
trackers are present. The data from the eye-tracker 
must then be filtered and fed directly into the models. 
This allows for the generation of optional hints for 
students who are about to fail within the learning 
situation. 

To generate more specific hints, a finer 
differentiation might be helpful. However, to achieve 
this with sufficient accuracy, more data is needed. 

The model is trained with data from students who 
solve the task on conventional paper. The assumption 
is that this data can be used to create support in a 
virtual environment if the virtual environment is 
similar enough. If this is not the case or the behavior of 
the students is different in the virtual environment, the 
model needs to be adapted or retrained.   

The fact that models can be trained exclusively 
using data collected by eye trackers and can achieve 
accuracies of up to 91% shows that a wealth of 
information can be gleaned from gaze directions. In 
this approach, locations, fixation times, and RC have 
been used as significant metrics. It cannot be ruled out 
that other significant metrics exist that would allow for 
a more refined classification. In this respect, any 
approach that provides a broader perspective on 
learners may be helpful.
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